Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurochem ; 168(3): 251-268, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38308566

RESUMO

The striatum can be divided into four anatomically and functionally distinct domains: the dorsolateral, dorsomedial, ventral and the more recently identified caudolateral (tail) striatum. Dopamine transmission in these striatal domains underlies many important behaviours, yet little is known about this phenomenon in the tail striatum. Furthermore, the tail is divided anatomically into four divisions (dorsal, medial, intermediate and lateral) based on the profile of D1 and D2 dopamine receptor-expressing medium spiny neurons, something that is not seen elsewhere in the striatum. Considering this organisation, how dopamine transmission occurs in the tail striatum is of great interest. We recorded evoked dopamine release in the four tail divisions, with comparison to the dorsolateral striatum, using fast-scan cyclic voltammetry in rat brain slices. Contributions of clearance mechanisms were investigated using dopamine transporter knockout (DAT-KO) rats, pharmacological transporter inhibitors and dextran. Evoked dopamine release in all tail divisions was smaller in amplitude than in the dorsolateral striatum and, importantly, regional variation was observed: dorsolateral ≈ lateral > medial > dorsal ≈ intermediate. Release amplitudes in the lateral division were 300% of that in the intermediate division, which also exhibited uniquely slow peak dopamine clearance velocity. Dopamine clearance in the intermediate division was most dependent on DAT, and no alternative dopamine transporters investigated (organic cation transporter-3, norepinephrine transporter and serotonin transporter) contributed significantly to dopamine clearance in any tail division. Our findings confirm that the tail striatum is not only a distinct dopamine domain but also that each tail division has unique dopamine transmission characteristics. This supports that the divisions are not only anatomically but also functionally distinct. How this segregation relates to the overall function of the tail striatum, particularly the processing of multisensory information, is yet to be determined.


Assuntos
Dopamina , Cauda , Ratos , Animais , Corpo Estriado , Neostriado , Antagonistas de Dopamina/farmacologia
2.
J Neurochem ; 162(5): 417-429, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35869680

RESUMO

A distinct population of dopamine neurons in the substantia nigra pars lateralis (SNL) has a unique projection to the most caudolateral (tail) region of the striatum. Here, using two electrochemical techniques to measure basal dopamine and electrically evoked dopamine release in anesthetized rats, we characterized this pathway, and compared it with the 'classic' nigrostriatal pathway from neighboring substantia nigra pars compacta (SNc) dopamine neurons to the dorsolateral striatum. We found that the tail striatum constitutes a distinct dopamine domain compared with the dorsolateral striatum, with consistently lower basal and evoked dopamine, and diverse dopamine release kinetics. Importantly, electrical stimulation of the SNL and SNc evoked dopamine release in entirely separate striatal regions; the tail and dorsolateral striatum, respectively. Furthermore, we showed that stimulation of the subthalamic nucleus (STN) evoked dopamine release exclusively in the tail striatum, likely via the SNL, consistent with previous anatomical evidence of STN afferents to SNL dopamine neurons. Our work identifies the STN as an important modulator of dopamine release in a novel dopamine pathway to the tail striatum, largely independent of the classic nigrostriatal pathway, which necessitates a revision of the basal ganglia circuitry with the STN positioned as a central integrator of striatal information.


Assuntos
Núcleo Subtalâmico , Animais , Gânglios da Base/metabolismo , Corpo Estriado/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Ratos , Substância Negra/metabolismo , Núcleo Subtalâmico/fisiologia
3.
Neuroscience ; 491: 43-64, 2022 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-35331847

RESUMO

Under normal conditions, dopamine (DA) clearance after release largely depends on uptake by the DA transporter (DAT). DAT expression/activity is reduced in some neuropsychiatric and neurological disorders. Our aim was to characterize the behavioral, neurochemical and electrophysiological effects of eliminating DAT in a novel knockout rat model we generated using CRISPR/Cas9. Consistent with existing DAT-KO models, our DAT-KO rats displayed increased locomotion, paradoxical calming by amphetamine, and reduced kinetics of DA clearance after stimulated release. Reduced DA kinetics were demonstrated using fast-scan cyclic voltammetry in brain slices containing the striatum or substantia nigra pars compacta (SNc) and in the dorsal striatum in vivo. Cocaine enhanced DA release in wild-type (WT) but not DAT-KO rats. Basal extracellular DA concentration measured with fast-scan controlled-adsorption voltammetry was higher in DAT-KO rats both in the striatum and SNc and was enhanced by L-DOPA (particularly after pharmacological block of monoamine oxidase), confirming that DA release after L-DOPA is not due to DAT reversal. The baseline firing frequency of SNc neurons was similar in both genotypes. However, D2 receptor-mediated inhibition of firing (by quinpirole or L-DOPA) was blunted in DAT-KO rats, while GABAB-mediated inhibition was preserved. We have also provided new data for the DAT-KO rat regarding the effects of slowing DA diffusion with dextran and blocking organic cation transporter 3 with corticosterone. Together, our results validate our DAT-KO rat and provide new insights into the mechanisms of chronic dysregulation of the DA system by addressing several unresolved issues in previous studies with other DAT-KO models.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Dopamina , Anfetamina/farmacologia , Animais , Corpo Estriado/metabolismo , Dopamina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Levodopa/farmacologia , Ratos
4.
J Neurochem ; 148(4): 462-479, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30203851

RESUMO

Despite the importance of somatodendritic dopamine (DA) release in the Substantia Nigra pars compacta (SNc), its mechanism remains poorly understood. Using a novel approach combining fast-scan controlled-adsorption voltammetry (FSCAV) and single-unit electrophysiology, we have investigated the mechanism of somatodendritic release by directly correlating basal (non-stimulated) extracellular DA concentration ([DA]out ), with pharmacologically-induced changes of firing of nigral dopaminergic neurons in rat brain slices. FSCAV measurements indicated that basal [DA]out in the SNc was 40.7 ± 2.0 nM (at 34 ± 0.5°C), which was enhanced by amphetamine, cocaine, and L-DOPA, and reduced by VMAT2 inhibitor, Ro4-1284. Complete inhibition of firing by TTX decreased basal [DA]out , but this reduction was smaller than the effect of D2 receptor agonist, quinpirole. Despite similar effects on neuronal firing, the larger decrease in [DA]out evoked by quinpirole was attributed to cell membrane hyperpolarization and greater reduction in cytosolic free Ca2+ ([Ca2+ ]in ). Decreasing extracellular Ca2+ also reduced basal [DA]out , despite increasing firing frequency. Furthermore, inhibiting L-type Ca2+ channels decreased basal [DA]out , although specific Cav 1.3 channel inhibition did not affect firing rate. Inhibition of sarcoplasmic/endoplasmic reticulum Ca2+ -ATPase (SERCA) also decreased [DA]out , demonstrating the importance of intracellular Ca2+ stores for somatodendritic release. Finally, in vivo FSCAV measurements showed that basal [DA]out in the SNc was 79.8 ± 10.9 nM in urethane-anesthetized rats, which was enhanced by amphetamine. Overall, our findings indicate that although tonic somatodendritic DA release is largely independent of action potentials, basal [DA]out is strongly regulated by voltage-dependent Ca2+ influx and release of intracellular Ca2+ . OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Assuntos
Potenciais de Ação/fisiologia , Sinalização do Cálcio/fisiologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/fisiologia , Parte Compacta da Substância Negra/fisiologia , Animais , Feminino , Masculino , Ratos , Ratos Wistar
5.
Neuroscience ; 396: 154-165, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30447392

RESUMO

Extracellular levels of dopamine (DA) and other monoamines in the brain depend not only on the classic transporters encoded by SLC6A gene family such as DAT, NET and SERT, but also a more recently identified group of low-affinity/high-capacity 'Uptake-2' transporters, mainly OCT3 and PMAT. The most frequently used pharmacological tool in functional studies of Uptake-2 is decynium-22 (D-22) known to block these transporters. However, the effectiveness of this drug in enhancing extracellular DA remains uncertain. Our aim was to test the hypothesis that D-22 increases extracellular levels of DA released from the somatodendritic region of dopaminergic neurons in the substantia nigra pars compacta (SNc) by reducing the OCT3/PMAT-dependent component of DA uptake. Extracellular DA was assessed indirectly, by evoking D2-IPSCs in SNc neurons following stimulated release of this neurotransmitter in midbrain slices obtained from mice. Recordings were conducted after partial inhibition of DAT with nomifensine, and after application of L-DOPA which increased the releasable DA pool. Contrary to our expectations, D-22 reduced, rather than increased, the amplitude of D2-IPSCs. Other effects included inhibition of GABAB-IPSCs and Ih current, and a reduction in firing frequency of nigral neurons. These results show that in addition to the previously known non-specific inhibitory action on α1 adrenoceptors, D-22 exerts additional off-target effects by inhibiting dopaminergic and GABAergic synaptic transmission in the SNc and the spontaneous (pacemaker) activity of nigral neurons. It remains to be established if these novel effects contribute to a reduction in spontaneous locomotor activity reported in previous studies after systemic drug administration.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/fisiologia , Quinolinas/farmacologia , Substância Negra/citologia , Animais , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Levodopa/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Nomifensina/farmacologia , Substância Negra/efeitos dos fármacos , Substância Negra/fisiologia
6.
Neurotherapeutics ; 14(4): 1148-1165, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28560708

RESUMO

The cis benzopyran compound tonabersat (SB-220453) has previously been reported to inhibit connexin26 expression in the brain by attenuating the p38-mitogen-activated protein kinase pathway. We show here that tonabersat directly inhibits connexin43 hemichannel opening. Connexin43 hemichannels have been called "pathological pores" based upon their role in secondary lesion spread, edema, inflammation, and neuronal loss following central nervous system injuries, as well as in chronic inflammatory disease. Both connexin43 hemichannels and pannexin channels released adenosine triphosphate (ATP) during ischemia in an in vitro ischemia model, but only connexin43 hemichannels contributed to ATP release during reperfusion. Tonabersat inhibited connexin43 hemichannel-mediated ATP release during both ischemia and reperfusion phases, with direct channel block confirmed using electrophysiology. Tonabersat also reduced connexin43 gap junction coupling in vitro, but only at higher concentrations, with junctional plaques internalized and degraded via the lysosomal pathway. Systemic delivery of tonabersat in a rat bright-light retinal damage model (a model for dry age-related macular degeneration) resulted in significantly improved functional outcomes assessed using electroretinography. Tonabersat also prevented thinning of the retina, especially the outer nuclear layer and choroid, assessed using optical coherence tomography. We conclude that tonabersat, already given orally to over 1000 humans in clinical trials (as a potential treatment for, and prophylactic treatment of, migraine because it was thought to inhibit cortical spreading depression), is a connexin hemichannel inhibitor and may have the potential to be a novel treatment of central nervous system injury and chronic neuroinflammatory disease.


Assuntos
Benzamidas/administração & dosagem , Benzopiranos/administração & dosagem , Conexina 43/antagonistas & inibidores , Conexina 43/metabolismo , Encefalite/prevenção & controle , Trifosfato de Adenosina/metabolismo , Animais , Células Cultivadas , Conexinas/metabolismo , Eletrorretinografia , Encefalite/metabolismo , Feminino , Humanos , Lisossomos/metabolismo , Masculino , Proteínas do Tecido Nervoso/metabolismo , Ratos Sprague-Dawley , Retina/efeitos dos fármacos , Retina/patologia , Retina/fisiopatologia
7.
IEEE Trans Biomed Circuits Syst ; 11(1): 28-34, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27542183

RESUMO

Optogenetics allows control of neuronal activity with unprecedented spatiotemporal precision, and has enabled both significant advances in neuroscience and promising clinical prospects for some neurological, cardiac, and sensory disorders. The ability to chronically stimulate light-sensitive excitable cells is crucial for developing useful research tools and viable long-term treatment strategies. Popular optogenetic stimulation devices often rely on bench-top light-sources tethered via an optical fibre to the research animal, or significant componentry protruding externally from animal. These approaches are prone to infection, vulnerable to damage and restrict the experimental approaches that can be conducted. An ideal optogenetic stimulator would be contained entirely within the animal and provide precisely controlled optical output. However, existing prototypes of fully implantable devices rely on amplitude tuning of wireless power, which can vary strongly with environmental conditions. Here we show that pulse-width modulation (PWM) of the intensity of a light-emitting diode (LED) can enable control of photo-stimulation intensity equivalent to direct amplitude modulation. This result has significant implications for fully implantable light delivery tools, as PWM can be implemented with simple and miniaturized circuit architectures. We have modified a telemeter device previously developed by our group to include a small form-factor LED capable of generating sufficient optical power with manageable electrical power requirements and minimal heat generation. We have tested key device components in an in vitro mouse brain slice preparation and shown that pulse-width-modulation is an alternative method to modulate photo-stimulation intensity using a miniature circuit and providing easy control.


Assuntos
Fibras Ópticas , Optogenética , Próteses e Implantes , Animais , Luz , Estimulação Luminosa
8.
Exp Neurol ; 287(Pt 1): 34-43, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27771354

RESUMO

Parkinson's disease (PD) is not only associated with degeneration of dopaminergic (DAergic) neurons in the Substantia Nigra, but also with profound loss of noradrenergic neurons in the Locus Coeruleus (LC). Remarkably, LC degeneration may exceed, or even precede the loss of nigral DAergic neurons, suggesting that LC neurons may be more susceptible to damage by various insults. Using a combination of electrophysiology, fluorescence imaging and electrochemistry, we directly compared the responses of LC, nigral DAergic and nigral non-dopaminergic (non-DAergic) neurons in rat brain slices to acute application of rotenone, a mitochondrial toxin used to create animal and in vitro models of PD. Rotenone (0.01-5.0µM) dose-dependently inhibited the firing of all three groups of neurons, primarily by activating KATP channels. The toxin also depolarised mitochondrial potential (Ψm) and released reactive oxygen species (H2O2). When KATP channels were blocked, rotenone (1µM) increased the firing of LC neurons by activating an inward current associated with dose-dependent increase of cytosolic free Ca2+ ([Ca2+]i). This effect was attenuated by blocking oxidative stress-sensitive TRPM2 channels, and by pre-treatment of slices with anti-oxidants. These results demonstrate that rotenone inhibits the activity of LC neurons mainly by activating KATP channels, and increases [Ca2+]ivia TRPM2 channels. Since the responses of LC neurons were smaller than those of nigral DAergic neurons, our study shows that LC neurons are paradoxically less sensitive to acute effects of this parkinsonian toxin.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Inseticidas/farmacologia , Locus Cerúleo/citologia , Neurônios/efeitos dos fármacos , Parte Compacta da Substância Negra/citologia , Rotenona/farmacologia , Animais , Animais Recém-Nascidos , Anti-Hipertensivos/farmacologia , Cálcio/metabolismo , Diazóxido/farmacologia , Peróxido de Hidrogênio/metabolismo , Hipoglicemiantes/farmacologia , Técnicas In Vitro , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neurônios/classificação , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Canais de Cátion TRPM/metabolismo , Tolbutamida/farmacologia
9.
Eur J Pharmacol ; 767: 144-51, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26472124

RESUMO

Endocannabinoids (eCBs) are cannabis-like substances produced in the brain where their primary function is to regulate synaptic transmission by inhibiting neurotransmitter release in a retrograde fashion. We have recently demonstrated a novel mechanism regulating GABAergic transmission from neurons in the Substantia Nigra pars reticulata (SNr) to dopaminergic neurons in the Substantia Nigra pars compacta (SNc) mediated by eCBs. Production of eCBs was initiated by spillover of glutamate, yet the source of the glutamate was not determined (Freestone et al., 2014; Neuropharmacology 79 p467). The present study aimed at elucidating the potential role of glutamatergic terminals arising from neurons in the Subthalamic nucleus (STN) in driving the eCB-mediated modulation of this inhibitory transmission. GABAergic IPSCs or IPSPs evoked in SNc neurons by electrical stimuli delivered to the SNr region were transiently inhibited by electrical or pharmacological (U-tube application of muscarinic agonist carbachol [100 µM]) stimulation of the STN (to 74±5% and 69±4% respectively). In both stimulation protocols, the attenuation of GABAergic transmission was abolished by cannabinoid receptor 1 antagonist rimonabant (3 µM), and reduced by group 1 metabotropic glutamate receptor antagonist CPCCOEt (100 µM), consistent with a glutamate-initiated and eCB-mediated mechanism. The carbachol-induced attenuation of GABAergic transmission was abolished by M3 muscarinic receptor antagonist 4-DAMP (10 µM), confirming a specific activation of STN neurons. These results demonstrate that glutamatergic projection from the STN to dopaminergic SNc neurons underlies an eCB-mediated inhibition of GABAergic input to these neurons.


Assuntos
Endocanabinoides/fisiologia , Neurônios GABAérgicos/fisiologia , Parte Compacta da Substância Negra/fisiologia , Núcleo Subtalâmico/fisiologia , Transmissão Sináptica/fisiologia , Animais , Carbacol/antagonistas & inibidores , Carbacol/farmacologia , Cromonas/administração & dosagem , Cromonas/farmacologia , Neurônios Dopaminérgicos/fisiologia , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Neurônios GABAérgicos/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Parte Reticular da Substância Negra/efeitos dos fármacos , Parte Reticular da Substância Negra/fisiologia , Piperidinas/farmacologia , Pirazóis/farmacologia , Ratos , Rimonabanto , Núcleo Subtalâmico/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
10.
Neurotoxicology ; 45: 1-11, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25193392

RESUMO

Although MPP(+) (1-methyl-4-phenylpyridinium) has been widely used to damage dopaminergic neurons of the Substantia Nigra pars compacta (SNc) and produce animal and cellular models of Parkinson's disease, the action of this toxin on ion channels and electrophysiological properties of these neurons remains controversial. Previous work has attributed the early effects of MPP(+) on the membrane potential and firing frequency of SNc neurons either to block of hyperpolarisation-activated (Ih) current, or to activation of ATP-sensitive K(+) (KATP) channels. Using a combination of electrophysiological and pharmacological techniques, we investigated the acute effects of MPP(+) (20 µM) on SNc neurons in rat midbrain slices. Our results show that MPP(+) inhibits the activity of these neurons in distinct stages involving different mechanisms. The early phase of inhibition was dependent on D2 autoreceptors, but [(3)H]raclopride membrane binding and cAMP production assays demonstrated that the toxin (0.001-100 µM) did not directly bind to these receptors nor activated the Gi-linked signalling pathway. Depletion of vesicular dopamine with Ro4-1284 attenuated the early inhibitory effect, indicating that D2 autoreceptors were activated by dopamine released from the somato-dendritic region. After longer exposure (>10-20 min), MPP(+) produced a late phase of inhibition which mainly involved activation of KATP channels, and required uptake of the toxin via dopamine transporter. Although Ih current mediated by hyperpolarisation-activated cyclic nucleotide-gated (HCN) channels was reduced by MPP(+), neither inhibition of firing nor membrane potential hyperpolarisation was significantly attenuated by blocking HCN channels with ZD7288. Our results indicate that the initial cellular events that lead to activation of cell death pathways by MPP(+) are complex and include KATP, and dopamine-dependent components, and show that the inhibitory effect of the toxin is independent of Ih block.


Assuntos
1-Metil-4-fenilpiridínio/toxicidade , Neurônios Dopaminérgicos/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Transtornos Parkinsonianos/induzido quimicamente , Substância Negra/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Fenômenos Eletrofisiológicos , Canais KATP/metabolismo , Inibição Neural/efeitos dos fármacos , Transtornos Parkinsonianos/metabolismo , Ratos , Ratos Wistar , Receptores de Dopamina D2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Substância Negra/metabolismo
11.
Neuropharmacology ; 79: 467-75, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24334069

RESUMO

Endocannabinoids (eCBs) modulate synaptic transmission in the brain, but little is known of their regulatory role in nigral dopaminergic neurons, and whether transmission to these neurons is tonically inhibited by eCBs as seen in some other brain regions. Using whole-cell recording in midbrain slices, we observed potentiation of evoked IPSCs (eIPSCs) in these neurons after blocking CB1 receptors with rimonabant or LY-320,135, indicating the presence of an eCB tone reducing inhibitory synaptic transmission. Increased postsynaptic calcium buffering and block of mGluR1 or postsynaptic G-protein coupled receptors prevented this potentiation. Increasing spillover of endogenous glutamate by inhibiting uptake attenuated eIPSC amplitude, while enhancing the potentiation by rimonabant. Group I mGluR activation transiently inhibited eIPSCs, which could be prevented by GDP-ß-S, increased calcium buffering or rimonabant. We explored the possibility that the dopamine-derived eCB N-arachidonoyl dopamine (NADA) is involved. The eCB tone was abolished by preventing dopamine synthesis, and enhanced by l-DOPA. It was not detected in adjacent non-dopaminergic neurons. Preventing 2-AG synthesis did not affect the tone, while inhibition of NADA production abolished it. Quantification of ventral midbrain NADA suggested a basal level that increased following prolonged depolarization or mGluR activation. Since block of the tone was not always accompanied by attenuation of depolarization-induced suppression of inhibition (DSI) and vice versa, our results indicate DSI and the eCB tone are mediated by distinct eCBs. This study provides evidence that dopamine modulates the activity of SNc neurons not only by conventional dopamine receptors, but also by CB1 receptors, potentially via NADA.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Endocanabinoides/metabolismo , Ácido Glutâmico/metabolismo , Substância Negra/fisiologia , Transmissão Sináptica/fisiologia , Animais , Ácidos Araquidônicos/farmacologia , Benzofuranos/farmacologia , Cálcio/metabolismo , Antagonistas de Receptores de Canabinoides/farmacologia , Fármacos do Sistema Nervoso Central/farmacologia , Dopamina/análogos & derivados , Dopamina/metabolismo , Dopamina/farmacologia , Dopaminérgicos/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Guanosina Difosfato/análogos & derivados , Guanosina Difosfato/farmacologia , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Levodopa/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Piperidinas/farmacologia , Pirazóis/farmacologia , Ratos , Ratos Wistar , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Receptores de Glutamato Metabotrópico/metabolismo , Rimonabanto , Substância Negra/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Tionucleotídeos/farmacologia
12.
J Neurophysiol ; 106(6): 2865-75, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21900507

RESUMO

Transient receptor potential melastatin 2 (TRPM2) channels are sensitive to oxidative stress, and their activation can lead to cell death. Although these channels have been extensively studied in expression systems, their role in the brain, particularly in the substantia nigra pars compacta (SNc), remains unknown. In this study, we assessed the expression and functional properties of TRPM2 channels in rat dopaminergic SNc neurons, using acute brain slices. RT-PCR analysis revealed TRPM2 mRNA expression in the SNc region. Immunohistochemistry demonstrated expression of TRPM2 protein in tyrosine hydroxylase-positive neurons. Channel function was tested with whole cell patch-clamp recordings and calcium (fura-2) imaging. Intracellular application of ADP-ribose (50-400 µM) evoked a dose-dependent, desensitizing inward current and intracellular free calcium concentration ([Ca(2+)](i)) rise. These responses were strongly inhibited by the nonselective TRPM2 channel blockers clotrimazole and flufenamic acid. Exogenous application of H(2)O(2) (1-5 mM) evoked a rise in [Ca(2+)](i) and an outward current mainly due to activation of ATP-sensitive potassium (K(ATP)) channels. Inhibition of K(+) conductance with Cs(+) and tetraethylammonium unmasked an inward current. The inward current and/or [Ca(2+)](i) rise were partially blocked by clotrimazole and N-(p-amylcinnamoyl)anthranilic acid (ACA). The H(2)O(2)-induced [Ca(2+)](i) rise was abolished in "zero" extracellular Ca(2+) concentration and was enhanced at higher baseline [Ca(2+)](i), consistent with activation of TRPM2 channels in the cell membrane. These results provide evidence for the functional expression of TRPM2 channels in dopaminergic SNc neurons. Given the involvement of oxidative stress in degeneration of SNc neurons in Parkinson's disease, further studies are needed to determine the pathophysiological role of these channels in the disease process.


Assuntos
Clusterina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Regulação da Expressão Gênica/fisiologia , Substância Negra/citologia , Adenosina Difosfato Ribose/farmacologia , Trifosfato de Adenosina/farmacologia , Animais , Biofísica , Cálcio/metabolismo , Clusterina/genética , Relação Dose-Resposta a Droga , Estimulação Elétrica , Antagonistas de Aminoácidos Excitatórios/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glibureto/farmacologia , Peróxido de Hidrogênio/farmacologia , Técnicas In Vitro , Isoquinolinas/farmacologia , Potenciais da Membrana/fisiologia , Oxidantes/farmacologia , Técnicas de Patch-Clamp , Piperidinas/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , RNA Mensageiro/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Substância Negra/metabolismo , Tetraetilamônio/farmacologia , Tolbutamida/farmacologia , Tirosina 3-Mono-Oxigenase/metabolismo
13.
Eur J Neurosci ; 33(9): 1622-36, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21453288

RESUMO

Organotypic cultures (OCs) have been widely used to investigate the midbrain dopaminergic system, but only a few studies focused on the functional properties of dopaminergic neurons and their synaptic inputs from dopaminergic and non-dopaminergic neurons also contained in such cultures. In addition, it is not clear whether the culturing process affects the intrinsic neuronal properties and the expression of specific receptors and transporters. We performed patch-clamp recordings from dopaminergic neurons in mesencephalic-striatal co-cultures obtained from transgenic mice expressing green fluorescent protein (GFP) under the tyrosine hydroxylase promoter. Some (10/44) GFP+ neurons displayed a bursting activity that renders the firing of these cells similar to that of the dopaminergic neurons in vivo. The culturing process reduced the hyperpolarization-activated current (I(h) ) and the expression of D2 receptors. Downregulation of D2 receptor mRNA and protein was confirmed with reverse transcriptase polymerase chain reaction and Western blotting. Immunocytochemistry revealed that many synaptic terminals, most likely originating from dopaminergic neurons, co-expressed the dopamine (DA) transporter and the vesicular glutamate transporter-2, suggesting a co-release of DA and glutamate. Interestingly, exogenous DA decreased glutamate release in young cultures [days in vitro (DIV)<20] by acting on pre-synaptic D2 receptors, while in older cultures (DIV>26) DA increased glutamate release by acting on α-1 adrenoreceptors. The facilitatory effect of DA on glutamatergic transmission to midbrain dopaminergic neurons may be important in conditions when the expression of D2 receptors is compromised, such as long-term treatment with antipsychotic drugs. Our data show that midbrain OCs at DIV>26 may provide a suitable model of such conditions.


Assuntos
Corpo Estriado/citologia , Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Mesencéfalo/citologia , Neurônios/citologia , Neurônios/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Potenciais de Ação/fisiologia , Animais , Células Cultivadas , Técnicas de Cocultura , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Transgênicos , Técnicas de Patch-Clamp , Receptores de GABA-A/metabolismo , Bloqueadores dos Canais de Sódio/metabolismo , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Tetrodotoxina/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
14.
Eur J Neurosci ; 30(10): 1849-59, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19912331

RESUMO

Rotenone is a toxin used to generate animal models of Parkinson's disease; however, the mechanisms of toxicity in substantia nigra pars compacta (SNc) neurons have not been well characterized. We have investigated rotenone (0.05-1 microm) effects on SNc neurons in acute rat midbrain slices, using whole-cell patch-clamp recording combined with microfluorometry. Rotenone evoked a tolbutamide-sensitive outward current (94 +/- 15 pA) associated with increases in intracellular [Ca(2+)] ([Ca(2+)](i)) (73.8 +/- 7.7 nm) and intracellular [Na(+)] (3.1 +/- 0.6 mm) (all with 1 microm). The outward current was not affected by a high ATP level (10 mm) in the patch pipette but was decreased by Trolox. The [Ca(2+)](i) rise was abolished by removing extracellular Ca(2+), and attenuated by Trolox and a transient receptor potential M2 (TRPM2) channel blocker, N-(p-amylcinnamoyl) anthranilic acid. Other effects included mitochondrial depolarization (rhodamine-123) and increased mitochondrial reactive oxygen species (ROS) production (MitoSox), which was also abolished by Trolox. A low concentration of rotenone (5 nm) that, by itself, did not evoke a [Ca(2+)](i) rise resulted in a large (46.6 +/- 25.3 nm) Ca(2+) response when baseline [Ca(2+)](i) was increased by a 'priming' protocol that activated voltage-gated Ca(2+) channels. There was also a positive correlation between 'naturally' occurring variations in baseline [Ca(2+)](i) and the rotenone-induced [Ca(2+)](i) rise. This correlation was not seen in non-dopaminergic neurons of the substantia nigra pars reticulata (SNr). Our results show that mitochondrial ROS production is a key element in the effect of rotenone on ATP-gated K(+) channels and TRPM2-like channels in SNc neurons, and demonstrate, in these neurons (but not in the SNr), a large potentiation of rotenone-induced [Ca(2+)](i) rise by a small increase in baseline [Ca(2+)](i).


Assuntos
Cálcio/metabolismo , Dopamina/metabolismo , Inseticidas/farmacologia , Neurônios/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Rotenona/farmacologia , Substância Negra/citologia , Trifosfato de Adenosina/farmacologia , Análise de Variância , Animais , Animais Recém-Nascidos , Antioxidantes/farmacologia , Fenômenos Biofísicos/efeitos dos fármacos , Biofísica , Cromanos/farmacologia , Cinamatos/farmacologia , Clusterina/antagonistas & inibidores , Relação Dose-Resposta a Droga , Interações Medicamentosas , Estimulação Elétrica , Feminino , Ácido Flufenâmico/farmacologia , Homeostase/efeitos dos fármacos , Técnicas In Vitro , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Neurônios/metabolismo , Técnicas de Patch-Clamp/métodos , Ratos , Ratos Wistar , Sódio/metabolismo , Substância Negra/efeitos dos fármacos , Tolbutamida/farmacologia , ortoaminobenzoatos/farmacologia
15.
Brain Res ; 1077(1): 187-99, 2006 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-16483552

RESUMO

During a period of acute ischemia in vivo or oxygen-glucose deprivation (OGD) in vitro, CA1 neurons depolarize, swell and become overloaded with calcium. Our aim was to test the hypothesis that the initial responses to OGD are at least partly due to transient receptor potential (TRP) channel activation. As some TRP channels are temperature-sensitive, we also compared the effects of pharmacological blockade of the channels with the effects of reducing temperature. Acute hippocampal slices (350 mum) obtained from Wistar rats were submerged in ACSF at 36 degrees C. CA1 neurons were monitored electrophysiologically using extracellular, intracellular or whole-cell patch-clamp recordings. Cell swelling was assessed by recording changes in relative tissue resistance, and changes in intracellular calcium were measured after loading neurons with fura-2 dextran. Blockers of TRP channels (ruthenium red, La3+, Gd3+, 2-APB) or lowering temperature by 3 degrees C reduced responses to OGD. This included: (a) an increased delay to negative shifts of extracellular DC potential; (b) reduction in rate of the initial slow membrane depolarization, slower development of OGD-induced increase in cell input resistance and slower development of whole-cell inward current; (c) reduced tissue swelling; and (d) a smaller rise in intracellular calcium. Mild hypothermia (33 degrees C) and La3+ or Gd3+ (100 microM) showed an occlusion effect when delay to extracellular DC shifts was measured. Expression of TRPM2/TRPM7 (oxidative stress-sensitive) and TRPV3/TRPV4 (temperature-sensitive) channels was demonstrated in the CA1 subfield with RT-PCR. These results indicate that TRP or TRP-like channels are activated by cellular stress and contribute to ischemia-induced membrane depolarization, intracellular calcium accumulation and cell swelling. We also hypothesize that closing of some TRP channels (TRPV3 and/or TRPV4) by lowering temperature may be partly responsible for the neuroprotective effect of hypothermia.


Assuntos
Edema Encefálico/fisiopatologia , Isquemia Encefálica/fisiopatologia , Hipocampo/metabolismo , Neurônios/metabolismo , Canais de Potencial de Receptor Transitório/fisiologia , Doença Aguda , Animais , Edema Encefálico/etiologia , Isquemia Encefálica/complicações , Cálcio/metabolismo , Feminino , Glucose/deficiência , Glucose/metabolismo , Hipocampo/citologia , Hipocampo/fisiopatologia , Masculino , Potenciais da Membrana/fisiologia , Neurônios/citologia , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar
16.
Neurotoxicology ; 26(5): 869-81, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15890406

RESUMO

6-Hydroxydopamine (6-OHDA) is a neurotoxin which has been implicated in the degeneration of dopaminergic neurons of the substantia nigra pars compacta (SNc) in Parkinson's disease (PD), and is frequently used to produce animal models of the disease. The aim of our study, conducted on midbrain slices obtained from young Wistar rats, was to determine the little known acute effects of this toxin (0.2-2.0 mM; 10-20 min exposure; 34 degrees C) on electrophysiological properties, intracellular Ca2+ levels and dendritic morphology of SNc neurons. Four experimental approaches were used: extracellular recording of firing frequency, whole-cell patch-clamping, ratiometric fura-2 imaging, and cell labeling with lucifer yellow (LY) or dextran-rhodamine. Extracellular recording revealed a concentration-dependent decrease in the tonic, pacemaker-like firing. In whole-cell recordings in voltage-clamp (V(hold) -60 mV), smaller doses (0.2-0.5 mM) induced an outward current (or cell membrane hyperpolarization in current-clamp), which could in some cells be reversed with tolbutamide (blocker of ATP-dependent K+ channels). A higher dose (1.0-2.0 mM) caused rapid reductions of cell membrane capacitance and membrane resistance. Toxin exposure gradually increased the intracellular Ca2+ level, which did not subsequently return to control. The increase in Ca2+ signal was not prevented by depletion of intracellular Ca2+ stores with thapsigargin (10 microM) or cyclopiazonic acid (30 microM), nor by removing extracellular Ca2+. Cell membrane current and Ca2+ responses were not prevented by blocking dopamine transporter (DAT). Cells loaded with LY or dextran-rhodamine showed signs of damage (cell membrane blebbing) in dendrites following toxin exposure (1 mM; 10-20 min). These results demonstrate that the oxidative and metabolic stress induced in SNc neurons by 6-OHDA results in rapid dose-dependent changes of cell membrane properties with morphological evidence of dendritic damage, as well as in disturbance of intracellular Ca2+ homeostasis.


Assuntos
Dopamina/fisiologia , Neurônios/efeitos dos fármacos , Oxidopamina/toxicidade , Substância Negra/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Dendritos/efeitos dos fármacos , Dendritos/patologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/antagonistas & inibidores , Eletrofisiologia , Corantes Fluorescentes , Técnicas In Vitro , Isoquinolinas , Potenciais da Membrana/efeitos dos fármacos , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Rodaminas , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...